Dynamic performance evaluation on energy saving and emission reduction of thermal power plant based on the self-organizing co-evolution
نویسندگان
چکیده
The energy saving and emission reduction in thermal plant is complex, with the open, non-equilibrium and interoperability features. In order to identifying the order parameters affecting plant system, a co-evolution model of energy saving and emission reduction in thermal power plant was built based on synergetic theory. According to the feathers of potential function based on mutation theory, the performance was divided into high efficiency, low efficiency and critical situation three operating states. Then, a dynamic evaluation rule was proposed in order to achieve dynamic performance evaluation on energy saving and emission reduction of thermal power plant. Finally, an empirical analysis of a thermal power plant showed that the order parameter of energy saving and emission reduction in this plant are soot emissionper unit power and grid electricity generation. There existed “high efficiency” and “low efficiency” performance status of energy saving and emission reduction. The performance before June in 2012 was mostly inefficient, things have changed since the investment in energy saving technology projects, the energy saving and emission reduction performance in this plant after June 2012 was highly efficient, which was in line with the actual situation, and proved the validity of this method used in dynamic performance evaluation on energy saving and emission reduction of thermal power plant.
منابع مشابه
Synergistic evolutionary model for dynamic evaluation of energy saving and emission reduction in thermal power enterprise
Through analyzing the complexity of energy saving and emission reduction system in thermal power enterprise, we can find that this system affected by various elements within the system, policies and technologies in the external environment. Therefore, in order to evaluate the performance of energy saving and emission reduction in thermal power plants, both the complex nonlinear relationships am...
متن کاملEnergy and Exergo-Economic Assessments of Gas Turbine Based CHP Systems: A Case Study of SPGC Utility Plant
Combined heat and power systems are becoming more and more important, regarding their enhanced efficiency, energy saving, and environmental aspects. In the peresent study, three configurations of combined heat and power systems are intended as an alternative to separate production plant by considering environmental aspects. First and second laws of thermodynamics are adapted to the operatin...
متن کاملOptimal Scheduling of Coordinated Wind-Pumped Storage-Thermal System Considering Environmental Emission Based on GA Based Heuristic Optimization Algorithm
The integration of renewable wind and pumped storage with thermal power generation allows for dispatch of wind energy by generation companies (GENCOs) interested in participation in energy and ancillary services markets. However, to realize the maximum economic profit, optimal coordination and accounting for reduction in cost for environmental emission is necessary. The goal of this study is to...
متن کاملAdsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite
This study presents the adsorption performance indicator for the evaluation of thermal power plant CO2 capture on mesoporous graphene oxide/TiO2 nanocomposite. To begin, this adsorbent was synthesized and characterized using N2 adsorption-desorption measurements (BET and BJH methods), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microsc...
متن کاملOn the effect of using phase change materials in energy consumption and CO2 emission in buildings in Iran: a climatic and parametric study
Energy crisis, global warming and other environmental issues are what motivate researchers to find new strategies to reduce energy consumption in buildings. Recently, using phase change materials (PCM) in the building’s envelopes has drawn significant attention as an energy-saving method, which helps in increasing the building’s thermal capacity. In the present research, the effects of the main...
متن کامل